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SUMMARY

An appropriate electron transport layer (ETL) with better energy
alignment and enhanced charge transfer, thereby helping efficient
extraction and transport of photogenerated carriers, is essential
to achieve the creation of high-performance devices. In this work,
we use functionalized MXene modified with fluoroalkylsilane and
dodecyltrimethoxysilane molecules, denoted as SnO2-MF and
SnO2-MH, as nanosheet dopants in the SnO2 ETL. From density func-
tional theory (DFT) calculations and ultraviolet photoelectron
spectra (UPS) spectra, we see that better band alignment is achieved
for the SnO2-MH ETL. Meanwhile, functionalizedMXene nanosheets
represent high electrical conductivity and mobility and could form
zero Schottky barrier heterojunction with SnO2, effectively and
rapidly enhancing carrier transfer. Finally, the suitable surface en-
ergy achieved by functionalized MXene additives can enlarge the
grain size of perovskite thin films. Consequently, a significant
improvement of power conversion efficiency (PCE) from 20.98%
to 23.66% (24.12% for the champion device with a fill factor [FF]
over 0.84) can be achieved for devices based on the SnO2-MH
ETL, which also possess improved moisture resistance and opera-
tional stability.

INTRODUCTION

There has been enormous interest in hybrid organic-inorganic perovskite solar cells

(PSCs) for their superior properties, including tuned band gap, low-cost solution

processing, high mobility, long charge-diffusion length, and high tolerance to de-

fects.1–5 In the last decade, the power conversion efficiency (PCE) of PSCs has signif-

icantly improved from 3.8% to 25.5%.4,6 For PCSs, an exquisite and suitable electron

transport layer (ETL) is crucial to achieving a high PCE and robust stability, including

alignment of energy level with perovskite materials and high electron mobility lead-

ing to satisfied VOC and excellent ability to extract carriers.7–9 Since it has demon-

strated a suitable energy level relative to the active layer and excellent optical prop-

erties,10,11 SnO2 is widely used as the ETL in n-i-p planar solar cells. There are various

methods for deposition, such as chemical-bath deposition, sputtering, e-beam

evaporation, atomic-layer deposition, and nanoparticle-solution deposition, among

which nanoparticle-solution deposition is extensively considered for its lower tem-

perature solution fabrication compatibility.12–16 However, the conductivity of

SnO2 is lower than TiO2
11. Moreover, nanoparticle-based PSCs have higher VOC def-

icits than those using TiO2 as the ETL.17 Hence, numerous proposed passivation

methods have been extensively investigated for both bulks of SnO2 and the interface
Cell Reports Physical Science 3, 100905, June 15, 2022 ª 2022 The Authors.
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between the SnO2 layer and active layer, such as ionic-compounds doping,18–20

acids treatment,14,21 self-assembled molecule (SAM) insertion,22,23 and bilayer

ETL formation,24–26 to enable a graded band alignment, ameliorate surface-wetting

property, improve conductivity, and reduce recombination center.20,23,27,28

MXenes, known as Mn+1XnTx, is a new family of two-dimensional (2D) materials firstly

found in 2011, where M is an early transition metal, X represents C or/and N, and Tx
means the surface terminations.29,30 So far, the reported MXenes include Ti3C2Tx,

Ti2CTx, Nb2CTx, V3CTx, Ti3CNTx, Ta4C3Tx, Nb4C3Tx, etc.
29,31–33 Ti3C2Tx is widely

used in PSCs for its high electrical conductivity as well as mobility,34 including as

an additive for both the active layer (AL)35,36 and the ETL,37–43 as the ETL/hole-trans-

port layer (HTL),44–48 or as the bilayer ETL/HTL,49 and it can be deposited as an elec-

trode.50 In recent years, functionalized MXene materials with different terminate

chemical groups have been well developed to further adjust the surface potential,51

hydrophilicity,52,53 or work function.54 The optimization of these properties,

including hydrophilicity and work function, has been sufficiently proved to enhance

the performance of PSCs through increasing perovskite grain size or eliminating po-

tential barriers.37,39 The reported MXene used in PSCs and their function with

related parameters are summarized in Table S1 in detail. However, a comprehensive

investigation of the significant PCS performance enhancement by functionalized

MXene materials is lacking in reports from recent literatures.

Herein, we demonstrate two surface-functionalization strategies for Ti3C2Tx with do-

decyltrimethoxysilane and fluoroalkylsilane (FOTS) molecules to form a self-assem-

bled monolayer on the MXene, denoted as MXene-H and MXene-F, respectively.

The proposed surface-functionalization strategy for Ti3C2Tx is initiated elaborately

to modify SnO2 thin films, thereby improving energy band alignment, reducing

macroscopic defects, and ameliorating the recombination in the interface between

the AL and the SnO2 ETL. Moreover, the crystal size of the perovskite is also enlarged

through the proposed strategy toward regulating suitable surface energy via

MXene-F and MXene-H. Through density functional theory (DFT) calculation and ul-

traviolet photoelectron spectra (UPS) tests, it can be found that MXene-H-doped

SnO2 shows better band alignment with the AL. Moreover, by forming nanoscale

heterojunctions, zero Schottky barriers can be achieved accordingly, which is bene-

ficial for the transportation of electrons. Finally, suitable surface energy could be

achieved by adding functionalized MXene dopants, indicating a larger grain size

and a higher VOC. For theMXene-H-doped ETL devices, the related PCE significantly

increased from 20.98% to 23.66% (24.12% for the champion device with a fill factor

[FF] over 0.84) compared with the undoped ETL device with the FAPbI3 system.

Furthermore, both optimal devices show higher moisture-resistance stability and

operation stability.
RESULTS AND DISCUSSION

Properties of functionalized MXene

The device with an ITO/SnO2/perovskite/Spiro-OMeTAD/MoO3/Ag planar struc-

ture and functionalized MXene structure is shown in Figure 1 and Figure S1. The wa-

ter contact angle is shown in Figure S2 and suggests that the two types of SAMmod-

ifications change the wettability of MXene nanosheets. The original MXene film with

a water contact angle (q) of 42.1� is much lower than that of MXene-H and MXene-F,

which show 106.7� and 114.9�, respectively, indicating that the trimethoxy silane

group of FOTS and dodecyltrimethoxysilane connects with the hydroxyl group in

the surface of MXene, causing a decrease in surface energy.
2 Cell Reports Physical Science 3, 100905, June 15, 2022



Figure 1. Structural schematic

Device structure and crystal structures of MXene, MXene-F, and MXene-H.
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To investigate the functionalized MXene materials, X-ray photoelectron spectros-

copy (XPS) has been used to explore its chemical changes. Figures 2D, S3, and S4

show the XPS spectra of revealing chemical compositions, including Ti 2p, C 1s, O

1s, F 1s, and Si 2p spectra of MXene and MXene-F as well as MXene-H. The Ti

2p1/2 spectrum reveals five concomitant peaks at 461, 461.5, 462.9, 464.2, and

466.2 eV,55,56 corresponding to Ti�C, Ti2+, Ti3+, and Ti�O as well as C-Ti-Fx, and

it also has an area ratio of 1:2 compared with the 2p3/2 spectrum. For C 1s spectra,

two characteristic peaks of MXene-F appear at 291.0 and 293.2 eV (Figure 2F), indi-

cating �CF2 and –CF3 contributed by FOTS,53 which proves that the FOTS mole-

cules were provided by large fluorine-containing functional groups on the surface

of MXene. Moreover, another piece of evidence could attest to this verdict for in F

1s spectra of MXene-F, as the C�F species from FOTS can also be detected at

688.2 eV (Figure 2F).57 Finally, for both MXene-F and MXene-H, the Si-O could be

seen in O 1s spectra (Figures 2E and 2I) at 532.9 eV and in the Si 2p spectra

(Figures 2H and 2L) at 102.4 eV.53 This indicates that the highly stable Si-O-

MXene bonds are formed by organosilanes condensed in FOTS and dodecyltrime-

thoxysilane and -OH on the surface of MXene,23 which has also been proved in q

measurements.

The role of functionalized MXene nanosheet dopant

Figure 3 shows the XPS spectra of SnO2 and SnO2 with different MXene samples.

There is an apparent primary peak for MXene-doped SnO2, MXene-F-doped

SnO2, and MXene-H-doped SnO2, denoted as SnO2-M, SnO2-MF, and SnO2-MH,

respectively, found at 529.7 eV, representing the Ti-O bond. It could be caused

by partial oxidation in the synthesis process58 and the annealing process of

MXene-doped SnO2 film during the fabrication of the devices. Furthermore, the

fewer Ti-based oxides in the film are considered to be beneficial in forming a semi-

conductor oxide heterojunction.37

Meanwhile, the Si-O could also be detected in O 1s spectra at 532.9 eV, indicating that

Si-O-MXene bonds exist in the SnO2-MF and SnO2-MH films. Moreover, other peaks
Cell Reports Physical Science 3, 100905, June 15, 2022 3



Figure 2. XPS spectra of SnO2 and SnO2 with different MXene samples

(A–D) O 1s, C 1s, F 1s, and Ti 2p spectra of MXene.

(E–H) O 1s, C 1s, F 1s, and Si 2p spectra of MXene-F.

(I–L) O 1s, C 1s, F 1s, and Si 2p spectra of MXene-H.
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have binding energies at 530.2, 530.8, and 531.8 eV attributed to Sn-O, hydroxyl group,

adsorbed oxygen, and H-O-H.59 It is worth mentioning that -OH groups could result in

traps during the SnO2 film-fabrication process, degrading the device’s performance.60

As shown in Figures 3B and 3C, it can be seen that the hydroxyl group’s peak at

530.8 eV dramatically decreased due to FOTS as well as dodecyltrimethoxysilane, which

suggests that the hydroxyl groups are eliminated. Moreover, in Figure S5, the Sn 3d3/2

and Sn 3d5/2 orbitals could be found at 495.1 and 486.6 eV, demonstrating that the Sn

atoms are in the form of SnO2 without any alterations.

Atomic force microscopy (AFM) images of the films of SnO2 are illustrated in Fig-

ure S6. For SnO2-M, SnO2-MF, and SnO2-MH, some ‘‘light spots’’ indicate the

random distribution of MXene nanosheets, which can also be observed in the top-

view scanning electron microscopy (SEM) in Figure S7. The root mean square

(RMS) roughnesses of SnO2, SnO2-M, SnO2-MF, and SnO2-MH are 3.77, 4.23,

4.28, and 3.97 nm, respectively, demonstrating a negligible influence with MXene

nanosheet doping. Moreover, as mentioned above, the q is increased with the two

functional groups. After a thermal-annealing process, the perovskite film could

not completely cover the substrate, resulting in pinholes on the film for a superhy-

drophobic substrate. Since the Gibbs free energy for the formation of a crystal nu-

cleus can be calculated as Equation (1), a smaller q leads to lower Gibbs free energy,

which is beneficial for nucleation.61
4 Cell Reports Physical Science 3, 100905, June 15, 2022



Figure 3. XPS spectra of O 1s of SnO2 and SnO2 with different MXene samples

(A) SnO2.

(B) SnO2-M.

(C) SnO2-MF.

(D) SnO2-MH.
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DGhetero =
ð2+ cos qÞð1-cos qÞ2

4
$DGhomo (Equation 1)

However, if the substrate becomes very hydrophilic, even if the film uniformity in-

creases, the grain size would become smaller due to the high density of nuclei.

Hence, the ETL must balance hydrophilicity and hydrophobicity to form a uniform

film with a large grain size.61,62 Figure S8 demonstrates the q of SnO2, SnO2-

M,SnO2-MH, and SnO2-MF at 5.8�, 10.4�, 15.0�, and 17.2�, indicating the suitable

surface energy to perovskite film formation. Another piece of evidence for this hy-

pothesis is the larger grain size for the perovskite films of SnO2-MF and SnO2-MH

ETLs. Figures 4A–4C shows the morphology of a perovskite deposited on these

three types of ETLs. All films are uniform without any pinhole for the slight q.

Although, the perovskite average grain size of SnO2-MF and SnO2-MH only

increased to more than 650 nm, as shown in the box chart in Figure 4D. However,

from AFM images of different perovskite films (Figure S9), the perovskite deposited

on SnO2-MF as well as SnO2-MH ETLs shows a higher RMS value, representing a

larger grain size; the larger grain size could ultimately result in a higher VOC.

The cross-sectional SEM image of the device is shown in Figure 5A: indium tin oxide

(ITO), MXene-doped SnO2, perovskite, Spiro-OMeTAD, and MoO3/Ag are shown

from the bottom to the top. The thickness of the ETL, the AL, and the HTL are ap-

proximatly 39.7, 464, and 105 nm, respectively. The short-circuit current density

(JSC) has a slight improvement, as shown in the external quantum efficiency (EQE)

performance (Figure 4B). The integrated current densities increase from 23.2 to

23.5 mA/cm2 for the CsFAMAPbIBr system and from 25.1 to 25.4 mA/cm2 for

the FAPbI3 system. The high EQE values are potentially due to the better
Cell Reports Physical Science 3, 100905, June 15, 2022 5



Figure 4. SEM images of perovskite layers on each ETL with the CsFAMAPbIBr system

(A) SnO2.

(B) SnO2-M.

(C) SnO2-MF.

(D) SnO2-MH.

(E) Grain-size box chart of the perovskite film with different ETLs.
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electron-extraction capability reported in previous works.63 For the CsFAMAPbIBr

system, the average PCE reaches the best value of 19.33% and 19.76% for SnO2-

MF and SnO2-MH devices, respectively, illustrating a significant improvement

compared with that of control devices (17.79%). The champion device of the

SnO2-MH-doped device achieves 20.26% with negligible hysteresis (Figures 5C

and S10). Moreover, for the FAPbI3 system, the average PCE increased from

20.98% to 22.58% and 23.66% for SnO2-MF- and SnO2-MH-doped devices (Fig-

ure 5D). We achieve a champion PCE of 24.12% with negligible hysteresis (Fig-

ure 5H). Particularly worth mentioning is that the FF could achieve 84.42%, and

the ideal values of FF could be calculated as follows:
6 Cell Reports Physical Science 3, 100905, June 15, 2022
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FF0 =
voc-lnðvoc + 0:72Þ

voc + 1
(Equation 2)
voc = qVoc

�
nkT (Equation 3)

n and k represent the ideality factor and Boltzmann’s constant, respectively. Hence,

from the VOC versus light-intensity test shown in Figure 6D, the ideality factor n could

be achieved, and the value of FF0 is 87.14%. Additionally, the band gap of our perov-

skite materials is 1.5 eV,64 which can be calculated from EQE data (lgy 830 nm), and

the S-Q limit value of FF is 89.9%.65 This indicates that the nonradiative recombina-

tion is strongly reduced by MXene-H dopants. Table 1 summarizes the average de-

vice characteristics.

The photovoltaic parameters are shown in Figures 5E and 5F for different AL sys-

tems, and all parameters are improved for MXene-doped devices. Functionalized

MXene material dopants significantly increase PCE because of the main improve-

ment of VOC and FF. Furthermore, we also evaluated the effect of additional concen-

trations, as shown in Figure S11 and Table S2. It can be found that when the doping

concentration is 0.03 wt %, the device displays the best performance, and with a

higher doping concentration, the performance of the device is degraded accord-

ingly. One potential mechanism for this phenomenon might be that the original

MXene cannot extract electrons effectively with the increasing doping concentration

due to a lack of Ti-O bond. It is also hard to be oxidized in the annealing process,

thereby improving the electron extraction ability of MXene.46

However, compared with the performance of SnO2-MH ETL devices, SnO2-MF ETL

devices reveal lower VOCs and FFs. From the band perspective, we tried to investi-

gate the reason for this phenomenon. The energy level and work function were then

probed with UPS and DFT calculations. Figures 6A–6D show the calculation work

functions of SnO2, SnO2-M, SnO2-MF, and SnO2-MH, which are 3.78, 3.67, 4.02,

and 4.32 eV. Meanwhile, the work function has an enormous variation for the original

MXene, MXene-H, and MXene-F (Figures S12 and S13).

To understand why the doping could change the work function, we further evaluated

the first principles of optimized structures and electron-density differences (Fig-

ure S14). The yellow and green parts represent charge accumulation and depletion,

respectively. The charge-depletion areas of SnO2-MH and SnO2-MF are larger than

that of SnO2-M, and the chain of -CF2 could also contribute to more charge-deple-

tion areas due to the solid electron-withdrawing effect of the F atom, thereby

increasing the work function.66,67 From UPS spectra (Figure 6E) and tauc plot (Fig-

ure S15), the band energy diagram can ultimately be achieved, as shown in Figure 6F.

The conduction band (CB) of SnO2-MH is lower than that of the CsMAFAPbIBr perov-

skite68 and has less energy band barrier, which is another reason for the uppermost

VOC besides the larger grain size. Moreover, for the FAPbI3 perovskite, the CB of
Figure 5. Photovoltaic performance of perovskite solar cells

(A) The cross-sectional image with ITO/SnO2-MH/perovskite/Spiro/Ag structure.

(B) EQE spectra of the champion devices based on each ETL.

(C) J-V curves of the champion devices based on each ETL under reverse scans for CsFAMAPbIBr system.

(D) J-V curves of the champion devices based on each ETL under reverse scans for FAPbI3 system.

(E) Photovoltaic parameters of solar cells with different ETLs for CsFAMAPbIBr system.

(F) Photovoltaic parameters of solar cells with different ETLs for FAPbI3 system.

(G) Scan direction-dependent J-V curve of devices for FAPbI3 PSCs without doping.

(H) Scan direction-dependent J-V curve of devices for FAPbI3 PSCs based on SnO2-MH ETL.

8 Cell Reports Physical Science 3, 100905, June 15, 2022



Figure 6. Band-alignment analysis of different SnO2 ETLs

(A–D) DFT calculations for the plane-averaged electrostatic potential of SnO2, SnO2-M, SnO2-MF, and SnO2-MH.

(E) UPS spectra of the four types of ETLs.

(F) Energy-level diagram of the ITO/ETL/AL structure based on SnO2, SnO2-M, SnO2-MF, and SnO2-MH as the ETLs.
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SnO2-MH is also suited for FAPbI3.
15 Hence, from both DFT calculations and UPS

spectra, it can be seen that a better band alignment is achieved for SnO2-MH.

Moreover, Huang et al. proved that nanoscale heterojunctions could be formed after

adding MXene nanosheets.39 Hence, the influences of surface functional groups

on the Schottky barrier regulation at the heterojunction interface are also investi-

gated by DFT calculations (Figure S16). The height of the Schottky barrier (4) on
Cell Reports Physical Science 3, 100905, June 15, 2022 9



Table 1. Performance parameters of CsFAMAPbIBr system and FAPbI3 system PCSs with MXene-doped SnO2 as ETLsa

Active layer ETL Voc (V) JSC (mA/cm2) FF (%) PCE (%)

CsFAMAPbIBr SnO2 1.064 G 0.025 23.09 G 0.63 71.74 G 1.92 17.62 G 0.39

CsFAMAPbIBr SnO2-M as ETL 1.069 G 0.022 23.18 G 0.84 72.83 G 2.85 18.05 G 0.72

CsFAMAPbIBr SnO2-MF as ETL 1.099 G 0.016 23.22 G 1.15 74.75 G 2.29 19.07 G 0.86

CsFAMAPbIBr SnO2-MH as ETL 1.106 G 0.026 23.47 G 0.45 75.96 G 2.28 19.71 G 0.54

FAPbI3 SnO2 1.062 G 0.065 25.01 G 0.47 79.03 G 1.16 20.98 G 1.55

FAPbI3 SnO2-M as ETL 1.075 G 0.031 25.07 G 0.78 80.60 G 0.72 21.72 G 0.82

FAPbI3 SnO2-MF as ETL 1.094 G 0.027 25.21 G 0.66 81.87 G 3.21 22.58 G 2.05

FAPbI3 SnO2-MH as ETL 1.118 G 0.037 25.44 G 0.42 83.18 G 1.11 23.66 G0:48
aCalculated from 16 individual devices.
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the metal/semiconductor heterojunction is defined as the energy difference be-

tween the Fermi level and the band edge:

4n = ECB-EF ; 4P = EF -EVB (Equation 4)

4n and 4p indicate the height of the Schottky barrier for n- and p-types, and EF, ECB,

and EVB stand for Fermi level, the bottom of CB, and the top of the valence band

(VB), respectively. If 4n <4P , the metal/semiconductor heterojunction belongs to

an n-type contact; otherwise, it is a p-type contact. When 4n or 4p is close to 0 or

equal negative value, the interface contact of zero Schottky barriers could be

achieved. These two metal/semiconductor heterojunctions show n-type contact

characteristics with 4n = �0.49 and �0.58 eV. Zero Schottky barrier contact is bene-

ficial for electron transport across the interface,69 consistent with previous EQE

results.

Then, to investigate the recombination kinetics of perovskite films on different ETLs,

steady-state photoluminescence (PL) and time-resolved PL (TRPL) are used, as

shown in Figures 7A and 7B. It can be seen that a significant PL quench is obtained

for the SnO2-MH device, again confirming the excellent electron extraction of the

device. Moreover, for TRPL, the relevant data are demonstrated in Table S3. t1 cor-

relates with radiative recombination of free charge carriers due to traps, which

means the recombination before free charge carriers are extracted by the ETL. There

is a negligible difference of t1. Moreover, t2 of the SnO2-MH film shows the least

time, indicating that this ETL effectively extracts electrons due to the high mobility

of the thin film. Furthermore, to estimate the trap density of bulk, the space-

charge-limited current (SCLC) technique is initiated and devoted to electron-only

devices (Figure 7C). The trap density Nt can be calculated as70

Nt =
2ε0εVTFL

eL2
(Equation 5)

where e is the elementary charge, L is the thickness of the perovskite film (Figure 5A),

ε is the relative dielectric constant,71 ε0 is the vacuum permittivity, and VTFL is the

trap-filling limit voltage. Hence, the trap densities of the perovskite films based on

SnO2, SnO2-M, and SnO2-MF as well as SnO2-MH ETLs are 3.21 3 1016, 1.76 3

1016, 1.44 3 1016, and 9.93 3 1015 cm-3, respectively. The reduction of trap density

can be partially attributed to the low grain boundary of the perovskite film. More-

over, the diode ideality factor is considered to be a good index to check the carrier

recombination mechanism in the device, and it can be achieved by72

Voc =
nkT

q
lnðIaÞ+C; (Equation 6)
10 Cell Reports Physical Science 3, 100905, June 15, 2022



Figure 7. Charge-recombination kinetics of perovskite films on different SnO2 ETLs

(A and B) Steady-state and time-resolved PL (TRPL) spectra of perovskite films on different ETLs.

(C) SCLC measurements of electron-only devices based on different ETLs with ITO/ETL/PVSK/

PCBM/Ag structure.

(D) VOC versus light intensity.
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where I is light intensity, C is constant, and a is the empirical parameter. From Fig-

ure 7D, the diode ideality factors of each device based on SnO2, SnO2-M, SnO2-

MF, and SnO2-MH ETLs can be achieved, which are 2.17, 1.73, 1.45, and 1.26. For

the device based on SnO2, the ideal factor of more than two indicates that both

Shockley-Read Hall (SRH) recombination and interface recombination are essential

in this device. The ideal factor for the device based on SnO2-MH decreased to

1.26, indicating that trap-assisted recombination is eliminated and band alignment

is achieved. This phenomenon also can be proved by electrochemical impedance

spectroscopy (EIS) analysis (Figure S17) for the falling Rtr (indicating better electron

extraction) and increased Rrec (effectively resisting charge recombination) of the de-

vice based on SnO2-MH ETLs, which showed the best performance. All devices used

in Figure 7 are from the CsMAFAPbIBr system.

Stability studies

Finally, the stability issue has been checked for these four devices based on SnO2,

SnO2-M, SnO2-MF, and SnO2-MH (Figure 8). The devices based on SnO2-MF and

SnO2-MH could maintain almost 80% of initial PCE without any encapsulation after

720 h under 25�C and 30% humidity conditions, contributing to high-quality perov-

skite films. However, the devices without MXene dopants degraded to less than 60%

of the initial PCE simultaneously. Additionally, the reason that the stability of the de-

vice based on SnO2-MF shows an uptrend after 300 h could be that the better surface

energy of the device based on SnO2-MF (Figure S8) leads to a higher-quality perov-

skite film, thereby improving moisture stability. For light stability, it is clear that after

1,000 h of illumination, the device based on SnO2-MH as the ETL maintains almost

80% of its initial efficiency, while for the same test duration, the control-group device

maintains only 38% relative to its initial efficiency. It is worth mentioning that there is

an evident phenomenon that the device recovered after 400 h continual operation.
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Figure 8. Stability parameters of devices based on SnO2, SnO2-M, SnO2-MF, and SnO2-MH ETLs

(A) Without encapsulation under 25�C and 30% humidity ambient atmosphere.

(B) Operational stability of PSCs over 1,000 h.
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The main reason for this phenomenon might be that excessive PbI2 in the perovskite

film disintegrates to metallic Pb and I2 under light illumination, and thus the gener-

ated metallic Pb acts as a quencher for carriers, gradually making the PCEs lower.73

Moreover, with the operation time increasing, the excessive MA+ and PbI2 also form

new perovskite film over the initial film as a passivation layer under a small bias

voltage (1.2 V operation voltage).74 This could be why the FF and PCE could recover

after a more extended operation.

In summary, we have demonstrated the addition of two types of surface functional-

ization Ti3C2Tx with dodecyltrimethoxysilane and FOTS molecules in a SnO2-based

ETL, thereby improving energy band alignment, reducing macroscopic defects, and

ameliorating the recombination in the interface between the AL and the SnO2 ETL.

Moreover, for two typical perovskite recipes, CsFAMAPbIBr and FAPbI3, both de-

vices with modified ETLs show better performance. This work provides a promising

potential direction toward achieving high-quality SnO2 ETLs, and we believe that the

desired modifications to the dopant could further enhance the device performance

preferably.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests should be directed to and fulfilled by the lead con-

tact, Chun Zhao (Chun.Zhao@xjtlu.edu.cn).
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Materials availability

This study did not generate new unique materials.

Data and code availability

All of the data supporting the results are presented in the main text and supple-

mental information. Further information and requests for additional data should

be directed to the lead contact.

Materials

PbI2, PbBr2, CsI, formamidinium iodide (FAI), methylammonium bromide (MABr),

lithium bis(trifluoromethanesulphony)imide (LiTFSI), pyridine,4-(1,1-dimethylethyl)-

(t-BP), and spiro-OMeTAD were purchased from Xi’an Polymer Light Technology,

and dimethylformamide (DMF; purity >99%), dimethyl sulfoxide (DMSO; purity

>99%), ethyl acetate (EA; purity >99%), and chlorobenzene (CB; purity >99%)

were purchased from J&K Scientific. The SnO2 colloid solution was purchased

from Alfa Aesar (tin (IV) oxide, 15 wt % in water). LiF was purchased from Aladdin

(99.9%). HCl was purchased from Sinopharm Chemical Reagent (AR, 36%–38%).

MAX Ti3AlC2 was purchased from Jiling 11 Technology (diameter <32 mm).

Synthesis of Ti3C2Tx
LiF/HCl was employed to etch precursor Ti3AlC2 to synthesize the MXene (Ti3C2TX), as

reported previously.75 Typically, HCl (60mL, 9M) and LiF (3 g) weremixed by stirring in a

Teflon beaker. Then, theMAXpowder was slowly dropped into the etching solution and

stirred for 24 h at 40�C. After this reaction, the resultant was washed with de-ionized (DI)

water for several centrifugation-rinsing cycles (4,500 RPM for 10 min) until the pH of the

solution approchaed 6. The washed resultant was mixed in 60 mL ethanol during the

exfoliation process and kept under ultrasonic for 1.5 h. To get the final dark grayMXene

nanosheet, the exfoliated resultant was freeze dried for 48 h.

Functionalization of MXene

To get the functionalization of the MXene nanosheet, the freeze-dried MXene nano-

sheet (200 mg) was dispersed in the precursors (10 wt % in 20 mL ethanol) of dode-

cyltrimethoxysilane and FOTS for stirring for 24 h, denoted as MXene-H and

MXene-F, respectively. After this reaction, the resultant was washed with DI water

and ethanol for several centrifugation-rinsing cycles (6,000 RPM for 10min). The final

functionalized MXene nanosheet was collected by freeze drying for 24 h.

Instruments and characterization

The current density-voltage (J-V) characters of solar cells were measured with a Keithley

2400 sourcemeter in anN2gloveboxunder a simulated sunAM1.5G (Newport VeraSol-

2 LED Class AAA Solar Simulator). The EQE of each cell was measured using a home-

made incident photon-to-current conversion efficiency (IPCE) system consisting of a

150 W tungsten halogen lamp (Osram64642), a monochromator (Zolix, Omni-l300),

an optical chopper, and a current to voltage (I-V) converter (QE-IV Convertor, Suzhou

D&R Instruments) equipped with lock-in amplifier (Stanford Research Systems SR 830).

To simulate the device under 1 sun conditions better, bias light froma 532 nmsolid-state

laser was introduced to the cell simultaneously. A calibrated Si solar cell was used as a

reference. SEM images were gained by a field-emission scanning electron microscope

(S-4800) under an accelerating voltage of 10 kV. The AFM images of the films of

SnO2 were studied using a Veeco Dimension 3100 instrument at the ambient tempera-

ture in tappingmode. The XPS and UPSmeasurements were conducted with a PHI 5000

VersaprobeII system. The electrochemical impedance spectra were measured using an

Autolab electrochemical workstation (Autolab PGSTAT 302 N, Metrohm Autolab B.V.)
Cell Reports Physical Science 3, 100905, June 15, 2022 13



ll
OPEN ACCESS Article
The absorption curves of the samplewere analyzed byUV-visible spectrometer (Lambda

750, PerkinElmer). PL and TRPL of solar cells were tested by a homemade defects imag-

ing system (LBIC). Operational stability of the cells was performed on amulti-channel so-

lar cell performance decay-testing system (PVLT-G8001M, Suzhou D&R Instruments) in-

side anN2-filled glovebox (H2O < 10 ppm,O2 < 10 ppm), and the cells were illuminated

with a white LED light (D&R Light, L-W5300KA-150, Suzhou D&R Instruments) at a simu-

lated one sun intensity (the initial short current equals the JSC measured under standard

conditions). The cell’s performance was measured by I-V sweeping from 1.2 to�0.05 V,

with a step of 0.01 V. The temperature was measured from time to time and was around

40�C–50�C.

Preparation of the solution

The SnO2 colloid solution (15 wt %) was diluted to a concentration of 3 wt % by DI

water. The solution was ultrasound for 10 min. The K0.05Cs0.05(FA0.85MA0.15)0.95P-

b(I0.85Br0.15)3 precursor solution was prepared as reported in our previous work.76

The FAPbI3 precursor solution was prepared by dissolving 1.5 mmol PbI2 and FAI

and 35 mol % MACl in a mixture solvent of DMF/DMSO (1 mL, 4:1 v/v) and being

stirred for 1–2 h at room temperature. The OAI solution was prepared by dissolving

5 mg OAI into 1 mL IPA. The spiro-OMeTAD solution was prepared by dissolving

72.3 mg spiro-OMeTAD into 1 mL CB, followed by 17.5 mL Li-TFSI (520 mg/mL in

acetonitrile) and 29 mL t-BP. Both OAI and spiro-OMeTAD were stirred overnight

at room temperature in the glovebox.

Solar cell fabrication

ITO glass was cleaned by ultrasonic cleaning through detergent, DI water, acetone, and

isopropanol for 30 min. Before use, the ITO substrate was cleaned with UV Ozone for

30 min. Then, the substrate was spin coated with a thin layer of SnO2 nanoparticles

from the SnO2 colloid solution at 4,000 RPM for 30 s with an accelerated speed of

2,000 RPM. Then, the substrate was annealed in ambient air at 150�C for 30 min.

For the K0.05Cs0.05(FA0.85MA0.15)0.95Pb(I0.85Br0.15)3 AL, the spin-coated process of

the perovskite solution was divided into a consecutive two-step process: the spin

rate of the first step was 1,000 RPM for 10 s with an accelerated speed of 500

RPM, and the spin rate of the second step was 5,000 RPM for 20 s with accelerated

speed of 1,000 RPM. During the second step end of 10 s, 400 mL ethyl acetate was

drop coated to treat the perovskite films, and then the perovskite films were an-

nealed at 120�C for 30 min in a glovebox. For the FAPbI3 AL, the spin rate of this

step was 5,000 RPM for 30 s with an accelerated speed of 1,000 RPM. During the

end of 10–12 s, 300 mL CB was drop coated to treat the perovskite films, and then

the perovskite films were annealed at 150�C for 15 min and 100 �C for 15 min.

Then, the film was washed with IPA by dropping several drops at 3,000 RPM and

then was heated at 100 �C for 1 min.

After cooling to room temperature, the OAI solution was coated on perovskite films at

5,000 RPM for 30 s with an accelerated speed of 5,000 RPM. Then, the spiro-OMeTAD

solution was coated at 3,000 RPM for 30 s with an accelerated rate of 3,000 RPM.

Then 8-nm-thick MoO3 and 80-nm-thick Ag were deposited on the spiro-OMeTAD

film by thermal evaporation with 0.3 and 2 Å/s, respectively.
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